Estimation of Leaf Area Index Using Ground Spectral Measurements over Agriculture Crops: Prediction Capability Assessment of Optical Indices

نویسندگان

  • D. Haboudane
  • J. R. Miller
  • N. Tremblay
  • E. Pattey
  • P. Vigneault
چکیده

Leaf area index (LAI) is a key canopy descriptor that is used to determine foliage cover, and predict photosynthesis and evapotranspiration in order to assess crop yield. Its estimation from remote sensing data has been the focus of many investigations in recent years. In this context, we have used ground measured reflectances to study the potential of spectral indices for LAI prediction using remotely sensed data. LAI measurements and corresponding ground spectra were collected over four years (2000, 2001, 2002 and 2003) for three crop types (corn, beans, and peas) in a study area at Saint-Jean-sur-Richelieu, near Montreal (Quebec, Canada). Hence, a set of vegetation indices were assessed in terms of their linearity with LAI variation, as well as their prediction ability for a range of crops types. Predictive equations have been developed from ground measured data, and then applied to airborne CASI hyperspectral images acquired over agricultural fields of corn, wheat, and soybean grown during summer 2001 (former greenbelt farm of Agriculture and Agri-Food Canada, Ottawa). The results demonstrated that while indices like NDVI suffer from saturation at medium and high LAI values others like MSAVI2 and MTVI2 result in significantly improved performances. Evaluation of predictions revealed excellent agreement with field measurements: values of CASI-estimated LAI were very similar to the measured ones. * Corresponding author.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture

Recent studies have demonstrated the usefulness of optical indices from hyperspectral remote sensing in the assessment of vegetation biophysical variables both in forestry and agriculture. Those indices are, however, the combined response to variations of several vegetation and environmental properties, such as Leaf Area Index (LAI), leaf chlorophyll content, canopy shadows, and background soil...

متن کامل

Assessment of RapidEye vegetation indices for estimation of leaf area index and biomass in corn and soybean crops

Leaf area index (LAI) and biomass are important indicators of crop development and the availability of this information during the growing season can support farmer decision making processes. This study demonstrates the applicability of RapidEye multi-spectral data for estimation of LAI and biomass of two crop types (corn and soybean) with different canopy structure, leaf structure and photosyn...

متن کامل

Potential of Landsat-8 spectral indices to estimate forest biomass

Forest ecosystems are among the largest terrestrial carbon reservoirs on our planet earth thus playing a vital role in global carbon cycle. Presently, remote sensing techniques provide proper estimates of forest biomass and quantify carbon stocks. The present study has explored Landsat-8 sensor product and evaluated its application in biomass mapping and estimation. The specific objectives were...

متن کامل

Development of an Index-based Regression Model for Soil Moisture Estimation Using MODIS Imageries by Considering Soil Texture Effects

Soil moisture content (SMC) is one of the most significant variables in drought assessment and climate change. Near-real time and accurate monitoring of this quantity by means of remote sensing (RS) is a useful strategy at regional scales. So far, various methods for the SMC estimation using a RS data have been developed. The use of spectral information based on a small range of electromagnetic...

متن کامل

Effect of Canopy Geometry on Estimation of Leaf Area Index in Winter Wheat Using Multi-angle Spectrum

This study presents a method for quantitatively estimating leaf area index (LAI) in winter wheat by exploring bi-directional reflectance distribution function (BRDF) data. In BRDF data, near-infrared reflectance (NIR) which is sensitive to crown component, canopy cover and crown shape, is affected by illuminated crown component, while red reflectance is sensitive to canopy gaps and controlled b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004